Recent Experience in Random Vibration Moment Limiting

Michael B. Van Dyke

Jet Propulsion Laboratory / California Institute of Technology

June 27, 2018

Spacecraft Mechanical Section/Dynamic Environments & Aerospace Nuclear Safety Engineering

The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. . Government sponsorship acknowledged.

Spacecraft & Launch Vehicle Dynamic Environments Workshop, June 26-28, 2018

Overview

- Overturning moment during vertical axis vibe contributed by
 - Static lateral c.g. offset of test article and GSE
 - Dynamic reaction of test article at its base I/F
 - Cross-axis inertial response of GSE mass below test article I/F
- Inertial response of GSE mass observed to be a dominant contributor, particularly due to
 - Massive GSE
 - Test article dynamics reacting significant shear forces at I/F
 - Cross-axis response to resonance of GSE/head expander
- Moment limiting implemented to control contribution from both test article dynamics and GSE inertial response
 - To prevent exceeding overturning moment capability of shaker

Necessity for Overturning Moment Limiting

Ecostress Instrument

LVIS Isolation System with OCO-3 Mass Sim

Test Articles ~1300-1500 lbs

GSE:
- Vibe Fixture 3317 lbs Head Expander 526 lbs

- Wide test article footprint relative to head expander drove massive fixture design to keep fixture modes above 250 Hz
- Dynamic overturning moment for Z-Axis random vibration test predicted to exceed rated capability of ETL V994 shaker (97k in-lbs) with current head expander
- Presentation will focus on LVIS/OCO-3 work as example

Measuring Overturning Moment (OTM)

Dynamic moment of test article

- OTM calculated from I/F reaction forces
 - Measured by force gauges

Inertial response moment of GSE

- OTM Calculated from lateral acceleration of GSE effective mass
 - Measured by GSE c.g. accel signals

Setting Up

For Test Article Dynamic OTM based on I/F Forces

Load Point Moment Arm Values

Vertical Dimensions re V994 Point of Rotation

Calculating Overturning Moment from Reaction Forces

 Overturning moment about origin (from multiple point forces):

$$M = \sum_{n=1}^{N} \Delta r_n \times F_n$$

$$\to M_x = \sum_{n=1}^{N} \left(\Delta y_n F_{zn} - \Delta z_n F_{yn} \right)$$

$$\to M_y = \sum_{n=1}^{N} \left(\Delta z_n F_{xn} - \Delta x_n F_{zn} \right)$$

Simplification for constant ∆z:

$$M_{x_total} = \sum_{n=1}^{N} (\Delta y_n F_{zn}) + \Delta z \sum_{n=1}^{N} F_{yn} + dy(mg)$$

$$M_{y_total} = \Delta z \sum_{n=1}^{N} F_{xn} (-\sum_{n=1}^{N} (\Delta x_n F_{zn}) - dx(mg)$$

$$|M_{xy_total}| = \sqrt{M_{x_total}^2(t) + M_{y_total}^2(t)}$$

Dynamic normal force component

Dynamic shear force component

Static moment

Simplification for Symmetric Rectangular Geometry

Load points symmetrical wrt to shaker central axis

$$\begin{split} \boldsymbol{M}_{x} &= \sum_{n=1}^{N} \left(\Delta y_{n} \boldsymbol{F}_{zn} \right) - \Delta z \sum_{n=1}^{N} \boldsymbol{F}_{yn} \\ &= \left(\Delta y \boldsymbol{F}_{z1} + \Delta y \boldsymbol{F}_{z2} - \Delta y \boldsymbol{F}_{z3} - \Delta y \boldsymbol{F}_{z4} \right) - \left(\Delta z \sum_{n=1}^{N} \boldsymbol{F}_{yn} \right) \\ &= \Delta y \left(\boldsymbol{F}_{z1} + \boldsymbol{F}_{z2} - \boldsymbol{F}_{z3} - \boldsymbol{F}_{z4} \right) - \Delta z \sum_{n=1}^{N} \boldsymbol{F}_{yn} \\ \boldsymbol{M}_{y} &= \Delta z \sum_{n=1}^{N} \boldsymbol{F}_{xn} - \sum_{n=1}^{N} \left(\Delta x_{n} \boldsymbol{F}_{zn} \right) \\ &= \Delta z \sum_{n=1}^{N} -\Delta x \boldsymbol{F}_{z1} + \Delta x \boldsymbol{F}_{z2} + \Delta x \boldsymbol{F}_{z3} - \Delta x \boldsymbol{F}_{z4} \\ &= \left(\Delta z \sum_{n=1}^{N} \boldsymbol{F}_{xn} \right) + \left(\Delta x \left(-\boldsymbol{F}_{z1} + \boldsymbol{F}_{z2} + \boldsymbol{F}_{z3} - \boldsymbol{F}_{z4} \right) \right) \end{split}$$

Amplifiers Employed

1 Multi-Function Amplifier

Kistler 5017A Multi-channel Charge Amp 8-channel charge amp for force gauges

4-channel summing functions

$$\Sigma Fz = \frac{1}{4}(Fz_1 + Fz_2 + Fz_3 + Fz_4)$$

$$Mx = \frac{1}{4}(Fz_1 + Fz_2 - Fz_3 - Fz_4)$$

$$My = \frac{1}{4}(-Fz_1 + Fz_2 + Fz_3 - Fz_4)$$

Single Function Amplifiers

2- SRS SIM980 Summing Amplifiers

•
$$y = \pm x1 \pm x2 \pm x3 \pm x4$$

4 SRS SIM983 Scaling Amplifiers

- Single channel
- Gain: 0.01 to 19.99

SRS SIM900 Main Frame

Powers SIM980's and SIM983's

Dynamic Moment Limiting Network

Gages 1-6: Z

Gages 1-24: X

Cages I I I A	Cuges I o. I	Cuges / II. I	Guges 10 10. 2	Cages 13 1 1.
···· Σ(1-24)	Σ(1-6)	Σ(7-12)	Σ(13-18)	<u>Σ(19-24)</u>
+Fy	Fz-1	Fz-2	Fz-3	Fz-4
			77/1	Fz-4 Fz-3 Fz-2

Gages 7-12: Z

Gages 13-18: Z

Gages 19-24: Z

SIM983	Scale value
983-1	- c/(4b) = +1.35
983-2	-c/(4a) = +0.457
983-3	-M*dz/(G*4b*FS) = + 1.71
983-4	M*dz/(G*4a*FS) = - 0.578

dz (head exp/fixture) = - 48.0" M (head exp/fixture mass) = 3843 lbm

FS (force gage full scale) = 2500 lbf/V

G (accel gain) = 1.0 V/g

Setting Up

For GSE Inertial OTM based on c.g. acceleration

Inertial Overturning Moment Limiting Implementation

 Necessary also to include moment contribution of the masses below the force gauges (and above the shaker head) of the GSE (head expander and fixture)

$$M_{x} = -\ddot{x}_{y} m_{eff} z_{cg}$$

$$M_{y} = \ddot{x}_{x} m_{eff} z_{cg}$$

 m_{eff} = effective mass of fixture/head expander first lateral mode = 3843 lbm

Dynamic and Inertial OT Moment Limiting Network

Diagram of Peak Moment Limiting Implementation

Determining Overturning Moment Spectral Limit

- Instantaneous resultant moment cannot be obtained in real time with current equipment (no multiplication function for squaring time histories)
- Challenge: Find a spectral $S_{Mxx}(f)$ and $S_{Myy}(f)$ limit that will result in limiting the instantaneous resultant $M_{xy}(t)$ peak value
- Requires statistical prediction of resultant time history peak from spectral RSS
- Use measured data from low level runs to calibrate prediction
 - Calculate statistical relationship between $S_{Mxx}(f)$ and $S_{Myy}(f)$ spectral averages and $M_{xy}(t)$ time history peak
 - Scale this relationship to predict future runs

Determining Overturning Moment Spectral Limit (cont.)

- Obtain measurements from lower level test run
- Use data for numerical simulation with trial limit profile for $S_{Mxx}(f)$ and $S_{Myy}(f)$

Calculate predicted $Peak'_{Mxy}$ with trial limit profile

Calculate predicted
$$Peak'_{Mxy}$$
 with trial limit profile
$$\sigma_{Mx} \text{ or } \sigma_{My} - \text{ whichever is dominant}$$

$$Peak'_{Mxy} = \sqrt{Mx_0^2 + My_0^2} + k\sigma_{Mxy} \left(\frac{\sigma_{My_Limited}}{\sigma_{My_Unlimited}}\right) \text{ Scale for next level run}$$

- Peak factor k based on statistics and previous runs
- Assumes σ_{Mxy} scales proportionally as the dominant σ_{Mx} or σ_{My}
- Re-iterate to find limit profile that results in desired peak limit
- Apply selected PSD limit profile for $S_{Mxx}(f)$ and $S_{Myy}(f)$ for next test run
- Adjust as necessary based on subsequent intermediate runs

Test

OCO-3 Mass Simulator on LVIS Isolation System

Z-Axis Test Configuration (OCO-3 Mass Sim on LVIS)

Moment Limiting Amplifier Setup

Patch panel for Kistler 5017A inputs/outputs

2 x 16-channel charge summing boxes

4 x 6-channel charge summing boxes

SIM 980 voltage summing SIM 983 voltage amplifiers scaling amplifiers

Kistler 5017A Multi-function amplifier

Moment Peaks Observed in 0 dB Run

- Two peaks exceeded shaker 97,000 in-lb. rated limit
 - Consulted w shaker manufacturer; occasional exceedances not a concern, but aim to avoid
- All other peaks were below 90,000 in-lb

Resulting Input Notching from Moment Limiting

- Notching appears to reflect dynamic excitation of test article isolation frequencies
- Moment limiting dominates over force limiting

Relative Contributions of Test Article Dynamic and Fixture Inertial Overturning Moments

- Fixture/head expander inertial overturning moment is dominant contributor
- Large mass of GSE increases sensitivity of moment measurement to GSE cross-axis acceleration
- Dominance of GSE inertial moment in driving peak moment drove the limiting to result in significant notching

Lessons Learned

- Consideration of GSE inertial contribution to overturning moment control is critical as this may be a dominant component, particularly important when GSE is massive
 - OTM measurements/limiting may be dominated by small cross-axis
 GSE accelerations
 - Better to use larger head expander with edge guides for large tests and avoid necessity of massive fixture and provide more moment capability
- Pre-test modeling for large test articles should include flexible model of head expander
 - Needed to predict inertial OTM contribution

Other Lessons Learned

- 2 ms delay introduced in GSE inertial contribution to moment due to accelerometer signals feeding twice through DAQ system
 - Resulted in some inaccuracy in real-time moment signal
 - Correction: feed all signals together through DAQ system so they are time synchronized
- High frequency ringing of Al fixture contaminates c.g. acceleration time history measurements
 - Doesn't effect controller limiting, as ringing frequency well above input frequency range
 - Effects post-test time history peak predictions
 - Correction
 - Apply low pass filter to outputs before calculating time peak
 - Apply passive material between accel and fixture to dampen high frequency

BACKUP

Unlimited -18 dB Run - Test Article Dynamic OTM

Frequency

102

10¹

Unlimited -18 dB Run – GSE Inertial OTM

- With large GSE mass and Δz moment arm, very low acceleration levels can generate significant overturning moment
- GSE mass acceleration appears correlated with test article shear reaction forces

Unlimited -18 dB Run – GSE/HE Inertial OTM

